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Abstract. We analyse tunnelling through time-modulated barriers. Our numerical results 
for the transmitted sideband intensities, obtained with wave-packet simulations, are in 
quantitative agreement with the analytical results of Buttiker and Landauer. For opaque 
barriers the asymmetry of the sideband intensities can be characterised with a single fre- 
quency whose inverse Buttiker and Landauer interpret as the traversal time. This simple 
behaviour does not hold in general, and we discuss some of the difficulties one meets in an 
attempt to generalise the one-parameter description to arbitrary barriers. Furthermore, we 
examine analytically the transmitted wavefunction in the adiabatic limit, and show that the 
related density and current involve both the dwell time, and the Buttiker time, defined in 
the contextofaLarmor clock. Thissuggeststhe possibility that experimentsprobingdifferent 
aspects of the transmitted wavefunction may yield different, but complementary, infor- 
mation about the tunnelling process. 

In recent years experimental and/or theoretical studies of tunnelling in semiconductor 
heterostructures have attracted widespread interest. Most of the theoretical models have 
been time-independent, even though many experiments would, in principle, require 
an explicitly time-dependent treatment. As an example we mention the theoretical 
estimation of the ultimate speed limit of a double-barrier, resonant-tunnelling device. 
Phenomenological discussions often require as input an estimate of the tunnelling time: 
the time a charge carrier spends in the classically forbidden barrier region. Several 
different tunnelling times have been suggested [l-61; however, due to the lack of 
conclusive experiments no single theoretical tunnelling time has been universally 
accepted. Indeed, it is not even clear if a unique tunnelling time exists [7, 81. 

In the present Letter we address several aspects of time-dependent tunnelling. First, 
we briefly describe a numerical method that is suitable for studying explicitly time- 
dependent situations. Next, as an application, we compare our numerical results to a 
case where analytical results are known [l, 21: a square barrier with an imposed weak 
harmonic perturbation. We hasten to point out that the numerical method employed in 
this work can with equal ease be applied to arbitrary tunnelling structures and/or time 
modulations (which do not have to be small). The harmonically perturbed square barrier 
has been used by Buttiker and Landauer to construct a theory for the traversal time for 
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tunnelling, and we proceed with a discussion of this model, and its generalisations and 
their relation to tunnelling times. We conclude by presenting and analysing the results 
of an analytical calculation of the transmitted electron density, and current in the 
adiabatic limit, and the relation of these observables to tunnelling times. 

Our numerical method is based on wave-packet simulations (i.e. direct numerical 
forward integration of the time-dependent Schrodinger equation with a given initial 
state). The numerical integration procedure is standard and it has been discussed 
elsewhere [9]. Here we only want to make a few points which are of special importance 
for the present study. 

(i) Choice of the initial state. Predictions for tunnelling times for 25-50A thick 
Al,Ga, -,As range typically between 1 and 10 femtoseconds. These times correspond to 
energies of the order of 0.6 to 0.06 eV, and in order to yield quantitative results the 
energy resoluticn of the simulation must be better than the above values. This implies 
that the spatial width of the initial wave packet, which is inversely proportional to 
the momentum width, and hence also determines the energy width, must be chosen 
accordingly. In practice we find that wave packets with half width c7 2 1000 A [ q ( t  = 
0 )  - exp( -x2/2a2)]  yielded sufficient accuracy. This, in turn, required long ‘contact’ 
regions (in order to prevent the initial state overlapping with the tunnelling barrier); 
typically we chose 1 pm-long flat regions outside the barriers. 

(ii) Discretisation of the potential. The thinnest barriers in our simulations contain 
only -10 mesh points which requires some care when choosing the discretisation pro- 
cedure. We found out that the procedure suggested by Collins and co-workers [5] was 
sufficient to lead to stable results. 

(iii) Momentum representation. We found it extremely useful to work simul- 
taneously in momentum space and real space. The point is that even the slightest 
numerical instability immediately reflects itself in the momentum representation of the 
wavefunction: thus the ‘cleanness’ of the momentum spectrum was an indispensable 
tool in judging the convergence and quality of the numerics. 

(iv) Consistency with static transmission coefficient. Another measure of the sharp- 
ness of the energy distribution of the initial state can be obtained by comparing the 
simulated transmission coefficient with the exactly known static value. For the par- 
ameters used in our calculations the agreement was always within a couple of percent; 
the error was larger for the thinner barrier presumably because the finite mesh size 
plays a more important role there. In addition, to make connection to the weak time- 
dependent perturbation considered by Buttiker and Landauer, the amplitude of the 
time-dependent modulations was chosen to be so small (VI = V0/20 in our simulations) 
that the total transmission coefficient is independent of the modulation frequency, and 
that higher-order processes (emission/absorption of several modulation quanta) are 
negligible. 

The physics of tunnelling through a time-modulated barrier has been elucidated 
by Buttiker and Landauer (BL) [1, 21. The tunnelling particles may absorb, or emit, 
modulation quanta, and thus in momentum (or energy) space the reflected and trans- 
mitted parts of the wavefunction consist of a main feature with the initial energy E ,  and 
sidebands at E -+ nfiw. Below we discuss the relation of these sidebands to tunnelling 
times. 

We now turn to our numerical results. Figure 1 shows a temporal evolution of a 
typical simulation, and as seen there the sidebands at energies E +- fiu are clearly 
resolved. Thus a quantitative evaluation of the sideband intensities is possible (this was 
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Figure 1. A Gaussian wave packet of mean energy, E ,  is shown colliding with a sinusoidally 
modulated square barrier, V ( x ,  t )  = (V,, + VI sin(ot)) B(x)B(d - x), where V,, = 0.23 eV,  
VI = 0.05 V,,, ho = 0.35 V,, and d = 50 A.  The square modulus of the wave packet for E = 
0.72 V,  is plotted both in real space (top: linear y axis, length unit = 22.22A)  and in 
momentum space (bottom: logarithmic y axis, momentum hk = d 2  corresponds to energy 
E = V”), for three characteristic time instants during the simulation: (a) before collision, 
( b )  ‘mid-collision’ and (c) after collision. After a completed collision (c) the momentum 
representation of the transmitted pulse (positive momentum) and the reflected pulse (nega- 
tive momentum) contains well resolved sidebands corresponding to emission or absorption 
of one modulation quantum. 

not the case for our preliminary data reported earlier [lo] for which we gave an erroneous 
interpretation). 

In figure 2 we show the sideband intensities obtained both from our simulations, and 
from the analytical results of BL. As seen in the figure, the two totally independent 
approaches are in quantitative agreement. This serves as a stringent test for the accuracy 
of the numerical method, and suggests its applicability to a wide range of other time- 
dependent phenomena. 

Biittiker and Landauer [1, 21 have suggested using the side-band intensities for 
defining a tunnelling time. For simplicity, let us first consider opaque barriers (kod S 1, 
ko = (2mVo/h2)”*, Vo  is the height of the barrier, and d is its thickness). In this case BL 
find that the intensities of the sidebands T ,  (=T(E 2 h o ) ,  E being the energy of the 
incoming particle, and w the modulation frequency) are given by 

T ,  = ( u l / 2 h o ) ’ ( e x p ( ~ u m d / h ~ )  -1)2T(E)  (1) 

where K = v2m(Vo  - E ) / h 2 ,  V I  is the modulation amplitude (it is assumed that u 1  
ho), and T(E)  = lD(E)1* are the transmissioncoefficient and the transmission amplitude 
of the static barrier, respectively. 

Next BL define an asymmetry function 

f(o> = ( T +  - T - ) / ( T +  + T - )  ( 2 )  
which for the opaque barrier acquires the simple form 
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Figure 2. Sideband intensities, Ti. as a function of modulation frequency obtained from a 
series of simulations of the kind shown in figure 1. Curves A, B and points, T,; curves A' ,  
B' and points, T-.  0,  E = 0.72 V,; H, E = 0.50 V,. It can be shown for Gaussian wave 
packets narrow in momentum space, that TI = (k2/k) lD=12,  and can thus be compared 
directly with the analytical results of [ 2 ] ,  which are shown as full curves. A quantitative 
agreement is found with the analytical and simulated results. Note that T _  vanishes for 
hw > E ,  where E = h'k2/2m and hk is the mean momentum of the incoming pulse. The 
barrier parameters are as in figure 1. 

f o p a q u e ( 4  = tanh(wmd/W. (3) 
Thus, in this case the asymmetry function is characterised by a single quantity with the 
dimension of time, zBL = md/hK, that separates characteristic low- and high-frequency 
behaviours. Therefore BL identify tBL as the traversal time for tunnelling. It is interesting 
that for an opaque barrier the same traversal time appears from an analysis of field 
emission [ 111. There a time-dependent field due to charge oscillations (surface plasmons) 
plays a similar role as the time-dependent barrier height (phonons) do in the problem 
discussed here. 

Let us now consider general barriers. Buttiker and Landauer [l, 21 discuss the 
crossover behaviour of the asymmetry function explicitly only in the opaque limit, but 
their arguments suggest the approach might have a more general validity. However, if 
one constructs the asymmetry function according to equation (2), and uses the results 
of BL for square barriers, it is seen that the resulting (complicated) expression cannot be 
characterised by a single quantity of dimension time. Even worse, for general barriers 
the asymmetry function is known only numerically, and some kind of operational 
procedure is called for. One may again examine the crossover from low to high fre- 
quencies as a suitable criterion. It appears obvious that (i) for low frequenciesf(u) is 
linear in U ,  and that (ii) for high frequenciesf(u) saturates to unity. The characteristic 
(or crossover, in the terminology of BL) frequency could therefore be defined by the 
relation 

We observe that in the opaque limit the above prescription gives the BL traversal time 
as the inverse of the characteristic frequency. However, this method cannot always be 
applied. For example, thin barriers (d = 25 A) the asymmetry function has a negatiue 
slope at the origin, and (4) has no solutions (see also [ 7 ] ,  where similar conclusions have 



Letter to the Editor 903 1 

been obtained). It is possible, of course, to construct other ad hoc procedures which do 
yield a critical frequency; the two points we want to make here are that (i) a simple 
generalisation of the crossover analysis in the opaque limit is not viable, and (ii) that the 
connection of the tunnelling time and the inverse of a characteristic frequency does not 
appear immediate for a general barrier. 

Let us now consider the adiabatic limit. Physically, i t  does not appear surprising that 
a finite frequency object (such as T ( E  * hw) )  does not directly yield intrinsic information 
of a static quantity (tunnelling time through a static barrier), and thus this limit may 
provide a more direct connection. Actually the generalised traversal time introduced by 
BL in [2], zBL = hid In D/d VI'/', emerges from an analysis of an adiabatic limit. After 
first identifying a traversal time zBL for an opaque barrier from a crossover behaviour at 
finite frequency of the asymmetry function of (2), BL notice that T ,  CK tiL in the limit 
w -+ 0. Their generalised traversal time appears when the limiting value of T ,  for an 
arbitrary barrier is forced to have the same quadratic form. 

The adiabatic limit of the modulated barrier bears a close analogue to the Larmor 
clock [12] where one extracts a tunnelling time in the limit of a vanishing magnetic 
field. In this context it is interesting to observe that by adding the static part of the 
transmitted wavefunction, D exp(ikx - iEt/h), and the one-phonon sideband terms, 
D ,  exp(ik,x - iE,t/h), the total transmitted wavefunction, in the limit of low frequency 
and amplitude of the modulation, can be written as a single term 

~ ( x , t ) = ~ ( ~ , V ) e x p { i [ k ( t r / D > x - ~ ( t ~ ) t / h ~  + q). ( 5 )  
This result, which is valid for a general form of the potential barrier if t e l / w  and x G 
u ( k ) / w ,  is obtained by relating the sideband amplitudes, D,, to the static transmission 
( D )  and reflection ( A )  amplitudes. A generalisation of the discussion in [2] gives 

where v is the average height of the barrier, v, = vT h w ,  E ,  = E 5 h w ,  
and k ,  = U-. The sideband intensities are given as T ,  =.lDk12. In the 
wavefunction matching procedure that leads to (6) we have used the fact that the 
eigenfunctions V ~ , ~ ( E ,  v) in the barrier region are approximately the same if the par- 
ameters (E,,  v) are changed to ( E ,  v,). Within the WKB approximation, where V ( x )  
and E always appear in the combination V(x)  - E ,  this is an exact relation. Upon 
expanding (6) to lowest order in w and summing the static and sideband terms as 
described above, one finds ( 5 ) ,  where 

E ( z g )  = E + V , w z b  

k ( z k )  = k + (V1/2E)(wzg)k. 

z g  = ih d In D ( E ,  v ) / d v  

(7) 

(8) 

(9) 

and 

The complex quantity 

has the dimension of time and is closely related to the complex times introduced by 
Sokolovski and Baskin [3] and Leavens and Aers [13]. Note that for the presently 
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considered symmetric barrier the real [14] and imaginary parts of equation (9) are 
th-e well known dwell time, ?&el], and the so-called Buttiker time [12], tz, as here 

= zdwell - i t ; .  The ge-neralisation of t g L  to arbitrary potential barriers [2, 6, 121 is 
related to (6) as t g L  = It; 1 .  The factor q in ( 5 )  is quite complicated and will not be given 
explicitly here. 

In deriving equations (5)-(9) we took the modulating potential to be V, sin(wt), i.e. 
V,wtfor t l/o. From (7) it is therefore tempting to interpret the modified energy and 
momentum of the transmitted wavefunction to be the result of an adiabatic interaction 
between the tunnelling electron and the rising barrier during a traversal time t;. Such 
an interpretation is not meaningful, however, as t; is complex and any measurable 
traversal time must certainly be real. Some insight into the role of t; can be gained by 
calculating the transmitted electron density and current density. If xo and x are points 
beyond the barrier and to, t % l / w ,  one finds to lowest order in w 

One notes that the decrease in the transmitted density with time is related to the 
Buttiker time, t,, i.e. to the imaginary part of t;. The result for the transmitted current 
density is a sum of two terms. The first simply reflects the change of the transmitted 
density with time while the second comes about because the change in density inside the 
barrier is associated with a change in current (to conserve charge). The latter term can 
also, from (8), be interpreted as arising from an adiabatic change of the momentum of 
the tunnelling electron while it interacts with the barrier during the well time, t d w e ] l ,  

given by the real part of t;. 
The result for the transmitted current is in a sense reminiscent of the results of 

Buttiker’s analysis [12] of the Larmor clock. There a beam of electrons, spin-polarised 
in the x direction, is travelling in the y direction impinging on a barrier. A magnetic 
field in the z direction inside the barrier gives the spin of the 
transmitted electrons a y-component proportional to WLtdwell ,  where wL is the Larmor 
frequency. In addition, Buttiker showed that the transmitted electrons also acquire a 
spin component in the z direction. This is because the incoming electrons, which have 
no spin component in the z direction, can be thought of as a superposition of a spin-up 
and a spin-down state. Because of the Zeeman interaction these states have different 
energies and therefore the energy dependence of the barrier transmission probability 
results in a non-zero z-component of the spin proportional to uLt,. 

Hence both for the Larmor clock and the time-modulated barrier systems part of the 
effect on the transmitted current of electrons is due to a dependence of transmission 
probability on the barrier height and is characterised by the Buttiker time, t,, part is due 
to an interaction process within the barrier during a time t dwe l l .  

For the case of the Larmor clock Buttiker [12] has argued that the magnitude of the 
spin in the yz plane can be used to define a traversal time, and thus identifies t = 
vtz + Though plausible, this reasoning does not appear forceful and we specu- 
late, in the light of (10) and (ll), that experiments probing different aspects of the 
transmitted wavefunction ( 5 )  may yield different, but complementary information about 
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the tunnelling process. A related discussion of the non-uniqueness of the tunnelling time 
appears in [8], 

After this manuscript was completed we received a preprint by Stovneng and Hauge 
[7], which asserts that no direct general relation exists between the characteristic fre- 
quency of a time modulated barrier, and the duration of the tunnelling process. Their 
conclusion appears consistent with our work. 

We are grateful to M Buttiker, E H Hauge and R Landauer for discussions and cor- 
respondence, and for communicating their work to us prior to publication. MJ is grateful 
for research support from the Swedish Natural Research Council and from the US 
Department of Energy through Grant No DE-AC05-8421400 administered by Martin 
Marietta Energy Systems. 
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